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ABSTRACT 
This paper presents two novel results which are significant for the 
application of time-frequency signal analysis techniques to real life 
signals. First, we introduce a measure for comparing the resolu- 
tion performance of TFDs in separating closely spaced compo- 
nents in the time-frequency domain. The measure takes into ac- 
count key attributes of TFDs such as main-lobes, side-lobes, and 
cross-terms. The introduction of this measure is an improvement 
of current techniques which rely on visual inspection of plots. 

The second result consists in proposing a methodology for 
designing high resolution quadratic TFDs for the time-frequency 
analysis of multicomponent signals when components are close to 
each other. A recently introduced TFD, the B-distribution, and its 
modified version are defined using this methodology. 

Finally, the performance comparison of quadratic TFDs us- 
ing the proposed resolution measure shows that the B-distribution 
outperforms existing quadratic TFDs in resolving closely spaced 
components in the time-frequency domain. 

1. INTRODUCTION 

This paper describes what we believe is the first attempt at pro- 
viding an objective quantitative measure criterion for comparing 
the performance of quadratic time-frequency distributions (TFDs), 
in terms of resolution (separation of closely spaced components), 
when applied to the analysis of multicomponent signals. 

Let us consider a multicomponent signal given by: 

s ( t )  = sl(t) -k 3 2 ( t >  (1) 

where 3l(t)  and 3 2 ( t )  are two parallel linear frequency modu- 
lated (LFM) signals of length N = 128 and sampling frequency 
f8 = 1Hr. The frequency of the first component 31 ( t )  goes from 
0.15Hz to 0.25Hz, while the frequency of the second component 
3 2 ( t )  varies from 0.2Hr to 0.3H.z. 

The multicomponent signal s ( t )  is represented in the time- 
frequency domain using the Wigner-Ville distribution (WVD), the 
spectrogram, the Choi-Williams distribution (CWD) [l], the Born- 
Jordan distribution [2], Zhao-Atlas-Marks (ZAM) distribution [3], 
and the recently introduced B-distribution [4,5] (see Figure 1). 

The desire to objectively compare the plots in Figure 1 mo- 
tivated the need to define a quantitative performance measure for 
TFDs. The characteristics of TFDs that influence their resolution, 
such as energy concentration, mainlobes separation, sidelobes and 
cross-terms minimisation, are combined to define a quantitative 
measure criterion. 
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Figure 1: TFDs of two LFMs with frequency fi = 0.15 - 0.25H.z 
and fi = 0.2 - 0.3H.z. Allplots use a rectangular window, apart 
from the spectrogram which uses the Hanning window 

This paper presents a comparison of the resolution performance 
of the above mentioned TFDs, using the newly proposed measure 
criterion. In this context, we show that the B-distribution out- 
performs the other quadratic TFDs for signals with components 
closely-spaced in the time-frequency plane. 



2. PERFORMANCE CRITERIA OF TIME-FREQUENCY 
DISTRIBUTIONS 

2.1. Monocomponent Signal 

The pcrformance of a TFD in the case of monocomponent FM sig- 
nals is commonly defined in terms of the energy concentration the 
TFD achieves about the signal instantaneous frequency (IF) 161. 
For the slice of TFD taken at the time instant t o ,  illustrated in Fig- 
ure 2, we may express the performance measure as: 

(2) 

where AM is the amplitude of the mainlobe of the TFD, A s  is 
the amplitude of the sidelobes, V is the 1.5 dB bandwidth' of the 
mainlobe and f represents the IF of the signal, all taken at time 
to.  The rationale for introducing ( 2 )  is that one wants to minimise 
sidelobe amplitude A s  and mainlobe bandwidth V relative to cen- 
tral frequency f, but maximise mainlobe amplitude AM. 

Figure 2: Slice of a TFD of a monocomponent signal taken at the 
time instant t = to 

2.2. Multicomponent Signal 

The performance of time-frequency distributions of a multicompo- 
nent FM signal, can be quantitatively measured in terms of 

0 the energy concentration of the distribution about the re- 
spective instantaneous frequency of each component, as ex- 
pressed by equation (2),  and 

0 the resolution as measured by the separation of the main- 
lobes of the components in the time-frequency plane, and 
the effect of cross-terms. 

2.2.1. Energy Concentration 

By extending the concept in Section 2.1, a TFD is said to have the 
best energy concentration for a given multicomponent FM signal 
if for each of the signal components: 

'We measure the bandwidth of the mainlobe of a component at the rms 
value of the component normalised amplitude. See also footnote 5.  

0 its 1.5 dB mainlobe bandwidth relative to f is the smallest 

0 it yields the smallest sidelobe magnitude to mainlobe mag- 
compared to that of other distributions, and if 

nitude ratio compared to those of other distributions. 

2.2.2. Resolution 

The frequency resolution in a power spectral estimate of a signal 
composed of two single tones, f1 and f2, is defined as the mini- 
mum difference f2 - fi for which the following inequality holds: 

Vl vz 
2 f l +  - < fz - (3) 

where VI and V2 are the 1.5 dB mainlobe bandwidth of the first 
and the second sinusoid, respectively, as illustrated in Figure 3. 

frequency 1 

Figure 3: Resolution of a two-component signal 

For a time-frequency distribution pz ( t ,  f )  of a two-component sig- 
nal, the above definition of resolution would be valid for every 
slice of cross-terms free TFDs, such as the spectrogram, taken at 
time t = t o ,  However, for TFDs with cross-terms, we need to ac- 
count for the effect of cross-terms on resolution, as illustrated by 
Figure 4 and explained in the next section. 

I '2' 

, I 

Figure 4: Slice of a TFD of a two-component signal taken at time 
t = to  

In Figure 4, Vl(to), f ~ ( t o ) ,  Asl(to) and A ~ ~ ( t o )  represent 
respectively the 1.5 dB mainlobe bandwidth, the instantaneous fre- 
quency, the sidelobe amplitude and the mainlobe amplitude of the 
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first component at timet = t o .  Similarly, Vz(to), fz(to),  Asz(to) 
and A ~ ~ ( t o )  represent the 1.5 dB mainlobe bandwidth, the in- 
stantaneous frequency, the sidelobe amplitude and the mainlobe 
amplitude of the second component at the same time b. Ax(t0)  
defines the cross-terms amplitude. 

2.2.3. Resolution Pegormance Measure of TFDs 

Equation (3) and Figure 4 suggest that the resolution performance 
of a time-frequency distribution of a two-component signal is given 
by the minimum value of the difference R = f i  - fi for which we 
still have a positive separation D between the components' main- 
lobes about their respective IFS, fz and f1. For TFDs, D should 
ideally be as close as possible to the true difference between the 
actual frequencies. It is expressed as: 

(4) (fz - 2)  - (fl + 2)  - -I-- V l  + vz 
2R 

D =  
fz - fl 

The resolution also depends on the following set of variables, all 
of which should be as small as possible: 

a) the 1.5 dB normalised mainfobe bandwidth of the signal 
component v k /  fk, k = 1,2, which is already included in 
D (equation (4)), 

b) the ratio of the sidelobe magnitude ]As,  I to the mainlobe 
magnitude [AM,  1, k = 1,2  of the components, and 

c) the ratio of the cross-term magnitude IAx I to the mainlobe 
magnitude of the signal auto-terms JAM, I ,  k = 1,2. 

It follows that the best TFD for multicomponent signals analysis 
is the one that minimises the positive quantities a), b) and c), and 
maximises' the separation D ,  concurrently. 

Hence, an indicator P of the resolution performance of a given 
TFD can be defined as 171: 

where AM, As  and AX are respectively the average amplitudes 
of the mainlobes, sidelobes and cross-terms of any two consecu- 
tive components of the multicomponent signal, with D being their 
relative separation. 

If P < 0, then there is no separation of the components, while 
if P 2 0, P provides a measure of the resolution performance, 
which takes into account separation D and the effect of cross- 
terms (best performance is achieved by minimising P). 

3. TIME-FREQUENCY SIGNAL ANALYSIS OF 

B-DISTRIBUTION 
CLOSELY SPACED COMPONENTS USING THE 

3.1. Defining TFDs via Ambiguity Filtering 

Different time-frequency distributions of the analytic signal z( t ) ,  
associated with the real signal s ( t ) ,  can be obtained by selecting 
different kemel functions g(v, T) in the general expression of the 
quadratic class3 181: 

2The maximum value is D = 1 which is obtained when Vi = Vi = 0. 
"11 three integrals have limits from -CO to +CO. Note: this formula 

differs from Cohen's formula by a minus sign in the first exponential. 

For g(v, T) = 1, we obtain the Wigner-Ville distribution (WVD) 
of the signal [2,9]: 

W 

- z ) e - j z s f T d r  (7) 
2 

A key to understanding time-frequency relationships is through 
understanding of the ambiguity domain. The symmetrical ambi- 
guity function (AV is defined as: 

From equations (7) and (8) we can see that the WVD and the AF 
are related by a two-dimensional Fourier transform [2]: 

W V D , ( t , f ) >  +: AFZ(v ,7)  

WVD,(t ,  f) = 1: [: AF, (v, r)e-iz*(f T--Yt)d vdr (9) 

It was shown that a signal mapped by the AF into the Doppler-lag 
domain always traverses the origin of that plane, while the cross- 
terms, having oscillating amplitude in the time-frequency domain, 
are located away from the origin in the Doppler-lag plane, the dis- 
tance being directly proportional to the time and frequency dis- 
tance of the signal components [I]. 

This property of the AF has inspired researchers to look for 
two-dimensional kemel filters g( v, T )  that enhance the generalised 
ambiguity function, g ( v ,  r )AF,(v ,  r ) ,  around its origin and sup- 
press it elsewhere. 

Using equations (6) and (9), the following expression can also 
be derived [2]: 

pZ(t ,  f) = [I LI g(v,T)AF,(v, T )e - j zn ( fT-u t )d  udr 

(10) 
Thus, quadratic TFDs may be found by filtering the symmetrical 
ambiguity function with g ( v , ~ )  and then carrying out the two- 
dimensional Fourier transform. For example, for the Wigner-Ville 
distribution with the ambiguity domain kemel filter equal to unity, 
no filtering is applied to the AF, resulting in the complete preser- 
vation of the cross-terms. This in retum makes the interpretation 
of the WVD of multicomponent signals highly difficult. The spec- 
trogram, on the other hand, leads to a quasi-total elimination of the 
cross-terms to the detriment of resolution. 

3.2. New Constraints for TFD Design 

It was reported in [2] that for a time-frequency analysis, a TFD is 
expected to be real, to satisfy the marginals and to have the instan- 
taneous frequency as its first moment with respect to frequency. 
These strict constraints on the kemel design in the ambiguity do- 
main [9] led to the terminology of Cohen's class. 

However, it is known that the spectrogram does not exhibit 
cross-terms, and does not satisfy the marginals. Yet the spectro- 
gram is a very popular tool in practical applications, suggesting 
that the time and the frequency marginal constraints may not be 
really strictly needed in practice. What may be more important is 
to improve the energy concentration about the IF for monocompo- 
nent signals and improve the resolution for multicomponent sig- 
nals. 

586 



Following this logic, we may therefore conclude that, to be a 
suitable tool for apractical time-frequency analysis, a TFD should 
verify the following minimum set of proper tie^:^ 

1. Bereal, 
2. Preserve the total energy of the signal: 

w o o  

E = s_, s_, P Z ( t ,  f )dtdf 

E R  = JI(' lItZ P L ( 4  f W d f  

3. Preserve the regional (component) energy: energy in the 
region R of the time-frequency plane bounded in time by 
[tl ,  t ~ ]  and frequency [fi, fz] should be: 

4. Reduce the cross-terms, while preserving resolution by min- 

5 .  Reveal the IF law of a monocomponent signal by its peak. 
imising measure P (defined by equation (5) ) ,  

To satisfy these constraints, Barkat and Boashash [4, 51 recently 
proposed a kernel for a quadratic TFD, known as the B-distribution, 
defined by: 

60 P 
G(t,.r) = [ _ g ( v , ? - ) e j Z T u t d v =  (1) cosh' (t  ) (11) 

The kernel filter g(v, T )  of the B-distribution (BD) was chosen in 
the ambiguity domain to be a two-dimensional function centred 
around the origin with sharp cut-off edges. In this way, the ker- 
nel would allow to retain as much auto-terms as possible while 
filtering out as much cross-terms. The amounts of auto-terms and 
cross-terms kept and filtered out are functions of the volume un- 
derneath the 2-D function g(v, T ) .  This volume can be changed by 
varying a single parameter ,B (0 5 ,B 5 1) which is application 
dependent. 

In addition, a modification to the BD kernel (the Modified B- 
distribution) by authors Hussain and Boashash allows an efficient 
estimation of the IF laws of a multicomponent signal. 

The kernel of the Modified B-distribution is defined as [lo]: 

where I?[] is the gamma function and a is a real positive number 
less than 1. 

4. PERFORMANCE MEASURE AND COMPARISON OF 
TIME-FREQUENCY DISTRIBUTIONS 

In this section, we use the newly defined measure criterion to com- 
pare the performance of the WVD, the spectrogram, the Choi- 
Williams distribution, the Born-Jordan distribution, Zhao-Atlas- 
Marks distribution, the B-distribution and the Modified B- (MB) 
distribution of the two-LFM-component signal defined in Section 1. 
For each time-frequency distribution we take a slice at the middle 
of the time interval and measure the parameters AM, A S ,  AX 
and V. These parameters are then used to calculate the frequency 

~~~~ 

4Note that the selection of a complete set of properties would be appli- 
cation dependent. 

separation of the components D, defined by equation (4), and the 
performance indicator P, defined by equation (5). 

The distributions and their respective measurements parame- 
ters are recorded in Table 1, while the slices of the TFDs at the 
middle of the time interval are displayed in Figure 5. 

(a) BD (solid) and Spectro- 
gram (dashed) 

(b) BD (solid) and WVD 
(dashed) 

(c) BD (solid) and CWD, 
cr = 2, (dashed) 

(d) BD (solid) and BJD 
(dashed) 

(e) BD (solid) and ZAMD, 
a = 2, (dashed) 

(f) BD (solid) and RD 
(dashed) 

Figure 5:  Slices taken at a half of the time interval of TFDs 
oftwo closely-spaced LFMs with frequency fi = 0.15 - 0.25H.z 
and f2 = 0.2 - 0.3H.z. BD=B-distribution, WVD=Wigner- 
Ville distribution, CWD=Choi- Williams distribution, BJD=Born- 
Jordan distribution, ZAMD=Zhao-Atlas-Marks Distribution, and 
RD=Rihaczek Distribution 

The TFD which gives the smallest positive P is the TFD with 
the best performance when used to analyse multicomponent sig- 
nals. In our case, the B-distribution (,B = 0.01) yields the smallest 
value for P (P = 1.04 x lo-') and hence is regarded as best. 
Similar results were obtained with other types of signals. 
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Table 1: Measurements parameters and the performance indicator P of TFDs (slices taken a t  the half of the signal time interval) of two 
closely-spaced LFMs with frequency fi = 0.15 - 0.25H.z and f2 = 0.2 - 0.3H.z 

4.1. Optimisation of the B-Distribution Parameter ,B Using the 
Performance Measure P 

The performance measure P can be used to optimise the value of 
the smoothing parameters of a given TFD. One approach would 
be to take consecutive slices of the TFD, find measure P for each 
of the slices, and average all such obtained measures for a given 
value of the TFD parameter to obtain the average performance 
measure Pa,,. Repeating this procedure over a range of values 
of the smoothing parameter, it is possible, by identifying the one 
which results into smallest Pa,, to obtain the optimal value of the 
smoothing parameter of the TFD considered. 

For example, using the measure E', we can optimise the pa- 
rameter p of the B-distribution for the signal in Section l. Sim- 
ulations have shown that p = 0.01 gives visually most appeal- 
ing results for various multicomponent signals [4]. However, this 
value can be refined by applying the above described optimisation 
procedure. 

and for the distribution slices 16: 1 12 (note that the signal length is 
N = 128)5 we find the optimal value of the smoothing parameter 
of the B-distribution to be &t = 9 . 9 ~  
Indeed, a reduction in Pa,, value of approximately 2 x is 
achieved if the smoothing parameter of the B-distribution is opti- 
mised, when compared to Pa, = 1.1 x of the B-distribution 
with ,B = 0.01. 

By calculating Pa, for ,B E [0,1] with the increment of 

(Pa, = 9.1 x 

5. CONCLUSION 

This paper has presented two key results which we believe to be 
fundamental to a better understanding and use of time-frequency 
signal analysis tools. 

The first key result is a definition of an objective criterion 
to compare the resolution performance of time-frequency distri- 
butions for multicomponent signals analysis using a quantitative 
measure of goodness for TFDs. This result fills an obvious need 
in that until now the comparison of the resolution performance of 
TFDs was primarily based on a visual impression of the plots of 
TFDs. 

The second key result is an improvement in the design of tools 
for high resolution time-frequency analysis of multicomponent sig- 
nals. By removing limitations in the way desirable properties of 

"e avoid calculations of the measure P for the first and the last eighth 
of the TFD slices (i.e. the beginning and the end of the TFD in time) 
since it is known [2] that in these regions of the time-frequency plane the 
components resolution is always significantly degraded. 

quadratic TFDs were previously chosen, a new set of design crite- 
ria has been defined. It was found that such defined B-distribution 
outperforms other existing distributions in terms of time-frequency 
resolution, as well as cross-terms suppression, when used to repre- 
sent signals with closely-spaced components in the time-frequency 
domain. 

The combination of these two results is an important break- 
through for the field of time-frequency signal analysis. It opens the 
way for' further research in developing high resolution DSP tools 
for non-stationary (time-varying) signals by removing unnecessary 
limitations, and providing a measure of quality of TFDs. 
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